

USB-AD16f

USB-Messsystem

Messen. Steuern. Regeln. Extrem leistungsfähig.

Signale präzise erfassen und ausgeben mit dem USB-Messsystem USB-AD16f. Das universale Hochleistungsgerät im stabilen Alugehäuse bietet einen hohen technischen Standard bei einem exzellenten Preis-Leistungsverhältnis. Es ist besonders für dynamische Anwendungen geeignet.

16 analoge Eingänge. 250kHz. 16 Bit. ±10V, ±5V, ±2V, ±1V.

Die Abtastung erfolgt an 16 Analogeingängen mit 16 Bit Auflösung und 250kHz Summenabtastrate. Damit bleiben selbst kleinste Änderungen hochfrequenter Signale nicht unentdeckt. Der Messbereich ist kanalweise softwareseitig einstellbar.

2 analoge Ausgänge. 16 Bit. ±10V.

Analoge Steuerungen sind mit den beiden analogen 16-Bit Ausgängen im 10V-Ausgabebereich möglich.

Offensichtlich sicher.

Durch die galvanische Trennung der Analogkanäle sind Messsystem und PC optimal geschützt.

Je 4 digitale Ein-/Ausgänge. 1 Zähler.

Digitale Zustände lassen sich an je vier digitalen Ein- und Ausgängen erfassen oder steuern. Digitale Eingänge werden zeitsynchron im Abtasttakt mit den analogen Eingängen eingelesen. Der zusätzliche Zählereingang ist galvanisch getrennt.

Plug & Play.

Der Anschluss zum PC erfolgt über USB. Damit nutzt das USB-AD16f alle USB-typischen Features (z. B. Plug&Play, Hot-Plug). Bis zu 127 Geräte können im laufenden Betrieb angeschlossen und installiert werden.

USB-Selbstversorger.

Versorgt wird das Gerät durch die USB-Schnittstelle. Dies reduziert den Verkabelungsaufwand und macht mobiles Messen noch einfacher.

Offen für Alle.

Breite Unterstützung erfährt das Messsystem sowohl von Windows[®] XP/7/8/10 als auch von Mac OS X, Free BSD und Linux. Die gesamte Software zur Installation und Programmierung des USB-AD16f ist kostenlos inbegriffen.

NextView®4. Kostenlos testen.

Das Gerät wird von NextView®4, der Software für Messdatenerfassung und Analyse, unterstützt. Eine voll funktionsfähige 30-Tage-Testversion ist im Lieferumfang enthalten. Damit lässt sich die Funktionalität des USB-AD16f direkt testen.

Funktionsschaltbild

1 Inbetriebnahme

Installieren Sie das bmcm Treiberpaket (s. Kap. 5.1.1). Befestigen Sie die beiden roten Rahmen mit den Füßen nach unten durch leichten Druck an beiden Gehäuseenden, wie auf der Produktabbildung zu sehen ist. Schließen Sie das mitgelieferte USB-Kabel am Gerät und an einem freien USB-Anschluss des PCs an und starten Sie die Plug&Play Installation (s. Kap. 5.1.2). Die Stromversorgung des Geräts wird durch die USB-Verbindung ermöglicht.

Anschließend können nach Bedarf weitere Softwarekomponenten installiert werden, wie in Kapitel 5 beschrieben.

2 Analogeingänge und Ausgänge

Die 37-polige D-Sub Buchse an der Gerätefront ist für den Anschluss der analogen Eingänge und Ausgänge vorgesehen. Die Pinbelegung der 37-poligen D-Sub Buchse lautet wie folgt:

Pin	Belegung	Pin	Belegung
1	AIn 1	11	AIn 11
2	AIn 2	12	AIn 12
3	AIn 3	13	AIn 13
4	AIn 4	14	AIn 14
5	AIn 5	15	AIn 15
6	AIn 6	16	AIn 16
7	AIn 7	17	n. c.
8	AIn 8	18	AOut 1
9	AIn 9	19	AOut 2
10	AIn 10	2037	AGND

AIn = Analogeingang / analog input
AOut = Analogausgang / analog output
AGND = analoge Masse / analog ground
n. c. = nicht verbunden / not connected

Ð

Die max. Potentiale gegenüber Masse dürfen ±12V nicht überschreiten. Bei Überspannungen an einem Kanal können auch alle anderen Kanäle falsche Werte anzeigen.

Auf der Platine des USB-AD16f befindet sich eine 40-polige Stiftleiste (s. Bild rechts, hier: Strommessung an Kanal 2).

Dies sind die internen Anschlüsse der 16 Analogeingänge, welche beispielsweise zum Anschluss von Stromshunts verwendbar sind (als Zubehör erhältlich unter: *ZU-CS250R*).

Die folgende Tabelle zeigt die Pinbelegung dieser Stiftleiste:

40-pol. Stiftl.	Belegung	40-pol. Stiftl.	Belegung
1	AIn 1	17	AIn 9
3	AIn 2	19	AIn 10
5	AIn 3	21	AIn 11
7	AIn 4	23	AIn 12
9	AIn 5	25	AIn 13
11	AIn 6	27	AIn 14
13	AIn 7	29	AIn 15
15	AIn 8	31	AIn 16
2, 4,, 30, 32	AGND	33, 34,, 39, 40	n. c.

O AIn = Analogeingang / analog input

● AGND = analoge Masse / analog ground

⊗ -- = interne Verwendung / internal use

3 Digitaleingänge und Ausgänge

Das USB-AD16f besitzt jeweils 4 digitale Ein- und Ausgänge (*low*: 0V..0,7V; *high*: 3,0V..5V) und einen isolierten Zählereingang. Die 5V-Hilfsspannung an Pin 6 lässt sich beispielsweise zur Sensorspeisung verwenden.

Alle Anschlüsse sind an der 15-poligen D-Sub Buchse auf der Geräterückseite herausgeführt. Die Pinbelegung lautet wie folgt:

Pin	Belegung
1	DOut 1
9	DOut 2
2	DOut 3
10	DOut 4
3	DIn 1
11	DIn 2
4	DIn 3
12	DIn 4

	Pin	Belegung	
	5, 13	DGND	
	6	V _{USB} (4-5V; max. 20mA)	
	7	Zählereingang low	
	14	Zählereingang high	
	8, 15	n. c.	

- O DIn = Digitaleingang / *digital input*
- DOut = Digitalausgang / *digital output*
- O DGND = digitale Masse / digital ground
- 4-5V; max. 20mA
- Cählereingang / counter input
- \otimes n. c. = nicht verbunden / not connected

0

- Die digitalen Ein- bzw. Ausgänge sind mit 1kΩ Widerständen geschützt. Bei einer Eingangsspannung außerhalb des zugelassenen Spannungsbereichs von 0V..5V, kann dies Schäden am Gerät zur Folge haben.
- Mit Ausnahme des Zählers sind die digitalen Ein- bzw. Ausgänge nicht galvanisch getrennt.
- Die digitale Masse (DGND) ist mit der Masse des PCs verbunden.

4 Anschaltbeispiele für die Digitalleitungen des USB-AD16f

Die folgenden Anschlussbeispiele zeigen die Verwendung der digitalen Ein- und Ausgänge und den Anschluss eines Zählers an das USB-AD16f. Die Pinbelegung der 15-poligen D-Sub Buchse ist dem Kapitel 3 zu entnehmen.

4.1 Anschaltbeispiel für den Zählereingang

Der galvanisch getrennte 16-Bit Zähler ist an den Pins 7 und 14 erreichbar.

Wird der maximale Zählerstand erreicht (2¹⁶-1), wird der Zähler zurückgesetzt und beginnt wieder bei Null.

4.2 Anschaltbeispiele für digitale Eingänge

Der Pulldown Widerstand von $3,9k\Omega$ zieht den Eingang auf low, wenn dort keine Spannung anliegt.

4.2.1 Anschluss eines Optokopplers

Einen optimalen Schutz bieten Optokoppler an jeder Eingangsleitung. Damit ist es möglich, höhere Spannungen zu erfassen und das Gerät vor Zerstörung zu schützen.

Bitte beachten Sie diesbezüglich auch Applikationsbeispiele des verwendeten Optokopplers.

Von bmcm ist eine Optokopplerkarte mit 8 Eingängen erhältlich.

4.2.2 Anschluss eines Tasters/ Schalters

Bei der Auswahl des Tasters unbedingt auf einen Entprellschutz achten, da sonst mehrere Impulse erfasst werden können.

Der 3,9kΩ Pulldown Widerstand ist zwingend nötig, um ein definiertes Low Signal zu erzeugen!

4.2.3 Anschluss eines Spannungsteilers

Bei Anschluss einer Gleichspannung größer als 5V muss ein Spannungsteiler verwendet werden, damit maximal 5V am Eingang des Geräts anliegen. Bei Überschreiten der 5V Eingangsspannung können Schäden am Gerät entstehen.

Das Verhältnis der zu verwendenden Widerstände berechnet sich nach folgender Formel:

U/U1 = (R1 + R2)/R1

Es genügt auch eine geringere Eingangsspannung (high \geq 3V).

4.3 Anschaltbeispiele für digitale Ausgänge

Serielle Widerstände in den Ausgangsleitungen begrenzen den Strom und schützen das Gerät vor Zerstörung.

4.3.1 Anschluss einer Leuchtdiode

Es können nur sogenannte Low-Current-Leuchtdioden verwendet werden, da nur diese bereits bei einem Strom von 1mA leuchten.

Bitte achten Sie auch unbedingt auf den unter den technischen Daten genannten Gesamtstrom (s. Kap. 7).

4.3.2 Anschluss eines Relais

Um höhere Ströme zu schalten, ist ein angeschlossenes Relais ideal. Da die Erregerspule des Relais einen höheren Strom benötigt, als das Messsystem an einer Leitung zur Verfügung stellt, ist ein Transistor vorgeschaltet.

O

Von bmcm ist eine Relaiskarte mit 8 Ausgängen erhältlich.

4.3.3 Anschluss einer Lampe

Um höhere Leistungen zu schalten, kann ein Transistor verwendet werden. Die Auswahl des Transistors muss an den maximal zu schaltenden Strom angepasst werden.

Die nebenstehende Skizze zeigt eine Applikation mit einem max. Strom von 100mA.

5 Softwareinstallation

Sämtliche für das USB-AD16f zur Verfügung stehende Software und Dokumentation befindet sich auf der im Lieferumfang inbegriffenen "Software Collection"-CD. Beim Einlegen der CD öffnet automatisch ein CD-Starter (andernfalls: **openhtml.exe** starten).

Wechseln Sie auf die Produktseite des USB-AD16f, indem Sie im CD-Starter den Eintrag "Produkte" und dann das Gerät ("USB-AD16f") auswählen, das unter der Schnittstelle "USB" aufgelistet ist.

PDF

Detaillierte Hinweise zur Installation und Bedienung der Software befinden sich in den zugehörigen Handbüchern. Für die PDF-Dokumentation wird der Adobe Acrobat Reader benötigt.

Die Installationen können direkt von CD aus ausgeführt werden. Lässt dies Ihr Browser nicht zu, speichern Sie zuerst das Installationsprogramm auf die Festplatte und starten dies dann separat.

Software	Softwareprodukt	Hinweise	Dokumentation
Geräte-	BMCM-DR	1. Installation des Treiberpakets auf Festplatte	IG-BMCM-DR
treiber	(Treiberpaket)	2. Windows [®] Plug&Play Installation	(Treiberinstallationshandbuch)
Program-	STR-LIBADX	ActiveX Control zur Hardware unabhängigen Pro-	IG-LIBADX
mierung		grammierung	(Installations-/Programmierhandb.)
	STR-LIBADX-EX	Beispielprogramm für LIBADX ActiveX Control	-
	SDK-LIBAD	SDK inkl. Beispielprogrammen für C/C++ unter	UM-LIBAD4
		Windows [®] , Mac OS X, FreeBSD, Linux	(Installations-/ Programmierhandb.)
Anwen-	<u>NV4.6</u>	Messsoftware NextView®4 in den Standalone Ver-	DS-NV4
der-		sionen:	(Datenblatt)
programm		• <u>Lite</u> : Basisversion mit Grundfunktionen	<u>UM-NV4</u>
		• <u>Pro</u> : Vollversion mit allen Funktionen	(Benutzerhandbuch)
		• <u>Analyse</u> : Version zur reinen Auswertung von	"Erste Schritte" im Demoprojekt
		Messdaten	(wird beim Erststart der Software
		Für 30 Tage steht NextView®4 als voll funktions-	geöffnet)
		fähige Testversion kostenlos zur Verfügung. Nach	
		dem Erwerb der Software sind alle Projekte, Mess-	
		dateien und Einstellungen weiter verwendbar.	

5.1 Treiberinstallation

Unter Windows[®] ist immer eine Treiberinstallation für das USB-AD16f erforderlich. Erst dann kann weitere Software installiert werden. Um eine korrekte Installation sicherzustellen, installieren Sie den Treiber bitte in der beschriebenen Reihenfolge.

Unter Mac OS X, FreeBSD und Linux muss keine Treiberinstallation durchgeführt werden.

5.1.1 Treiberpaket installieren

Die vorherige Installation des bmcm Treiberpakets <u>BMCM-DR</u> auf die Festplatte Ihres PCs erleichtert Windows[®] die Treibersuche erheblich. Insbesondere bei Treiberupdates muss nur das neue Treiberpaket installiert werden, die Hardware verwendet automatisch die neue Version.

Das Treiberpaket befindet sich auf der Produktseite des USB-AD16f auf der "Software Collection"-CD.

5.1.2 Plug&Play Installation

Sobald das Gerät am PC angeschlossen wird, meldet das System die neue Hardware ("USB-BASE"). Da sich das Treiberpaket bereits auf der Festplatte befindet, wird diese unter Windows[®] 7/8/10 automatisch installiert. Unter Windows[®] XP wird die automatische Hardwareerkennung mit der folgenden Option gestartet:

- Windows[®] 7/8/10: keine Angaben erforderlich

- Windows[®] XP: "Software automatisch installieren" (SP2: nicht mit Windows[®] Update verbinden!)

5.1.3 Überprüfung der Installation

Der Geräte-Manager von Windows[®] zeigt nach erfolgreicher Installation den Eintrag "Messdatenerfassung (BMC Messsysteme GmbH)", der die installierte bmcm Hardware auflistet. Um den Geräte-Manager zu öffnen, gehen Sie bitte folgendermaßen vor:

- Windows[®] 7: Start / Systemsteuerung / System und Sicherheit / System / Geräte-Manager

Windows[®] 8/10: Rechtsklick Bildschirmecke links unten (Tastatur "Windows+X") / Geräte-Manager
Windows[®] XP:Start / Systemsteuerung / System / TAB "Hardware" / Schaltfläche "Geräte-Manager"

Ein Doppelklick auf das "USB-BASE Analog/Digital I/O Board" zeigt die Eigenschaften des USB-AD16f an. Allgemeine Informationen, Hinweise auf Gerätekonflikte und mögliche Fehlerursachen erhält man im TAB "Allgemein".

5.2 Programmierung

Die Programmierung des USB-AD16f mit Visual Basic[®], Delphi[®], Visual C++[™] ist unter Windows[®] XP/7/8/10 mit dem Hardware unabhängigen <u>STR-LIBADX</u> ActiveX Control möglich. Dies steht auf der "Software Collection"-CD auf der Produktseite des USB-AD16f zur Verfügung. Nach Installation muss das ActiveX Control in der jeweiligen Programmierumgebung eingebunden werden.

- Visual Basic[®]: Menü "Projekt / Komponenten", Eintrag "LIBADX Object Library 4.0"
- Delphi[®]: Menü "Komponenten / ActiveX importieren", Eintrag "LIBADX Object Library 4.0"

Durch Auswahl des Eintrags <u>STR-LIBADX-EX</u> lassen sich Beispielprogramme (inkl. Source Code) installieren, die die Verwendung des ActiveX Controls demonstrieren.

Die Programmierung des USB-AD16f unter Mac OS X und Unix (FreeBSD, Linux) in C/C++ erfolgt mit Hilfe der LIBAD4 Programmierschnittstelle.

Das <u>SDK-LIBAD</u> für das jeweilige Betriebssystem (auch Windows[®]) befindet sich auf der Produktseite des USB-AD16f. Hinweise zur Einbindung in die Programmierumgebung erhalten Sie im zugehörigen Handbuch <u>UM-LIBAD4</u>.

5.3 USB-AD16f mit NextView®4 verwenden

Installieren Sie die voll funktionsfähige Testversion der professionellen Software für Messdatenerfassung und Verarbeitung NextView®4 um die Eigenschaften und Funktionen des USB-AD16f zu testen.

Eine erste Anleitung zur Installation und Bedienung des Programms erhalten Sie im Datenblatt bzw. dem Startprojekt von NextView®4. Für detaillierte Informationen steht u. a. eine Online-Hilfe zur Verfügung.

Die Testversion gilt 30 Tage ab Anforderung der Lizenznummer. Wird in dieser Zeit keine kostenpflichtige Lizenz erworben, schränkt sich der Funktionsumfang von NextView®4 stark ein!

6 Wichtige Benutzungshinweise zu USB-AD16f

- Das Gerät ist nur für Kleinspannungen geeignet, beachten Sie die entsprechenden Vorschriften! Betreiben Sie das Gerät nur in geschlossenem Gehäuse. ESD Spannungen an offenen Leitungen können im Betrieb zu Fehlfunktionen führen.
- Zum Reinigen des Geräts nur nichtanlösende Reinigungsmittel verwenden. Eine Wartung ist nicht vorgesehen.
- An der 37- bzw. 15-poligen D-Sub Buchse werden die Signale angeschlossen, dabei möglichst geschirmte Kabel verwenden. Für gute Störunterdrückung den Schirm einseitig anschließen. Offene Eingänge ggf. abschließen.
- Die Gerätemasse und das Gehäuse haben eine elektrische Verbindung mit der PC-Masse. Meist ist die PC-Masse auch geerdet. Achten Sie darauf, dass keine Erd- oder Masseschleifen entstehen, andernfalls entstehen Messfehler!
- Der Gain ist auf "gerade Werte" abgeglichen, so dass vom vollem Bereich des Wandlers nur 64000 Schritte (bei 16 Bit) benutzt werden. Die Messbereiche sind dadurch effektiv immer etwas größer (z. B. ±10,24V) als die angegebenen Messbereiche. Dies hat den Vorteil, dass auch Messbereichsüberläufe erkannt werden können.
- Das Produkt darf für keine sicherheitsrelevanten Aufgaben verwendet werden. Mit der Verarbeitung des Produkts wird der Kunde per Gesetz zum Hersteller und übernimmt somit Verantwortung für den richtigen Einbau und Benutzung des Produktes. Bei Eingriffen und/oder nicht bestimmungsgemäßem Einsatz erlischt die Garantie und alle Haftungsansprüche sind ausgeschlossen.

Das Produkt darf nicht über öffentliche Müllsammelstellen oder Mülltonnen entsorgt werden. Es muss entweder entsprechend der WEEE Richtlinie ordnungsgemäß entsorgt werden oder kann an bmcm auf eigene Kosten zurückgesendet werden.

7 Technische Daten

(typ. bei 20°C, nach 5min., +5V Versorgung)

• Analoge Eingänge

Analoge Eingange					
Kanäle // Auflösung:	16 single-ended mit galvanischer Trennung zum PC // 16 Bit				
Abtastrate:	max. 250kHz Summenabtastrate				
Messbereich:	$\pm 10 V$	±5V	$\pm 2V$	$\pm 1 V$	
Rauschen im jew. Messbereich:	±5 LSB	±7 LSB	±8 LSB	±8 LSB	
Überspannungsschutz:	max. ±35V (eingescha	altet), max. ±20V (ausges	chaltet), max. ±20mA in Su	ımme über alle Eingänge!	
Eingangswiderstand // Eingangskapazität:			1MΩ (bei ausgesc	haltetem PC: 1kΩ) // 5pF	
Nullpunktsdrift // Verstärkungsdrift:			:	±50ppm/°C // ±50ppm/°C	
Frequenzgenauigkeit //Frequenzdrift:	max. ±50ppm// max. ±50ppm/°C				
* Die Summenabtastrate ist die Summe d	ler benutzten einzelnen K	analabtastraten (z. B. 5	Kanäle à 50kHz => 250kH	Hz Summenabtastrate).	
Analoge Ausgänge					
Spannungsbereich // Ausgangsstrom:			2 Spannungsausgän	ge mit ±10V // 1mA max.	
Auflösung // Genauigkeit:				16 Bit // typ. 1mV	
Nullpunktsdrift // Verstärkungsdrift:				±50ppm/°C // ±50ppm/°C	
Digitale Ein-/ Ausgänge					
Kanäle // Pegel:	4 Ei	ngänge, 4 Ausgänge // CM	MOS/TTL kompatibel (low	: 0V0,7V; high: 3V5V)	
Stromentnahme je Ausgangspin:		1m/	A (mit ca. 4V-Pegel), max. 2	2,5mA (mit ca. 3V-Pegel)	
Überspannungsschutz:		max. +5,5V, mit 1kΩ ge	eschützt, max. ±20mA in Su	ımme über alle Eingänge!	
Zähler:		1MHz, 16 Bit, galvanisch getrennt, 512V Eingangsspannung			
Allgemeine Daten					
Stromversorgung // USB-Schnittstelle:	+5V vo	m USB-Anschluss des P	Cs, max. 100mA // USB 2.0) kompatibel (high-speed)	
Analoganschlüsse:	alle Kanäle an einer 37-poligen D-Sub Buchse an der Gerätefront				
Digitalanschlüsse:	alle Kanäle an einer 15-poligen D-Sub Buchse an der Geräterückseite				
LEDs:	Statusanzeige mittels 4 LEDs an der Geräterückseite				
CE-Normen:	EN61000-6-1, EN61000-6-3, EN61010-1; Konformitätserklärung (PDF) unter www.bmcm.de				
ElektroG // ear-Registrierung:	RoHS und WEEE konform // WEEE-RegNr. DE75472248				
max. zulässige Potentiale:	60V DC nach VDE, max. 1kV ESD auf offene Leitungen				
Temperaturbereiche // rel. Luftfeuchte:	Arbeitstemp. 070°C, Lagertemp2585°C // 0-90% (nicht kondensierend)				
Gehäusemaße // Schutzart:			16	57 x 113 x 30 mm ³ // IP30	
Lieferumfang:	ieferumfang: Gerät im Alugehäuse, 1m USB-Anschlusskabel, "Software Collection"-CD, Be				
verfügbares Zubehör:	Hutschienenset ZU-SCHI, Stromshunt ZU-CS250R,				
		Anschlusskabel ZUKA3	SB, ZUKA3/SS, D-Sub St DD/ CD/ CO, waggardights	a Cabäuga ZU DDOV DC	
Garantie:	2 Jahre ah Kaufdatum	hei hmcm. Schäden am P	bb/-Cb/-CO, wasseruichte rodukt durch falsche Benut	zung sind ausgeschlossen	
	2 Janie ao Kauluatulli	bei omenn, benaden ann i	Totaki duren faisene Dellut	zung sind ausgesein05501	
Softwareunterstutzung					
Software auf CD (mitgeliefert):	ActiveX Controls LIBA	DX (Hardware unabhäng	ig) zur Programmierung un windows [®] XP/7/8/10 Ma	ter Windows [®] XP/7/8/10;	

NextView®4 (optional):

professionelle Software in den Versionen Professional oder Lite zur Erfassung und Analyse von Messdaten unter Windows[®] XP/7/8/10

Linux); Messprogramm NextView®4 als Testversion zum Testen und Bedienen der Hardware

Hersteller: BMC Messsysteme GmbH. Irrtum und Druckfehler sowie Änderungen, die dem technischen Fortschritt dienen, vorbehalten. Rev. 3.0 15.05.2018